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The stability of periodic solutions of quasilinear elastic slightly asymmetric gyroscopic
systems with distributed and concentrated parameters is considered, The motion inves~
tigated is described by a system of partial differential equations; the boundary conditions
and matching conditions at the sites of the concentrated parameters also take the form

of quasilinear equations, The nonlinear functions in the equations of motion and in the
boundary conditions are assumed to be of sufficiently general form; this makes it possible
to investigate the stability of the periodic solutions under the most varied perturbations,
It is assurned that some of the natural frequencies of the linearized system ¢an be criti-
cal or resonance frequencies, The gyroscopic effect of the distributed mass is assurmed

to be negligibly small, as usual,

The periodic oscillation states of unbalanced flexible rotors, some of whose supports
have nonlinear characteristics, are constructed as an example. The equations in varia~
tions are written out and it is shown that their stability can be investigated completely
by the proposed method,

1, Many problems of applied mechanics involve the action on quasilinear elastic
gyroscopic systems of periodic forces whose frequencies are usually multiples of the
angular velocity @ of the gyro system rotor, Their equations of motion have periodic
solutions with the period 7' = 271 / @; however, these solutions may turn out to be
unstable for various reasons, so that almost-periodic autooscillatory states (not always
permissible ones)arise in the gyro system, The conditions of stability of the periodic
oscillations therefore assume considerable importance,

The motion of elastic gyro systems is described in the more complicted cases by a
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system of nonhomogeneous quasilinear partial differential equations with nonhomogene~
ous quasilinear boundary conditions, Without limiting generality, let us consider the
simplest such system,

Let the functions u; (z, 1), j = 1, 2 over the interval 0 <z <! satisfy the qua-
silinear differential equatxons

(AT

—ai ézzj + }m = f;(z, 8) -+ pFj (W t, 2, Uy, Us, Uy, Uny, Ungs Uge)  (1.1)

u; = au,-/(?x =0 for x= 0
and du, &u; e

i 2i fE]
° dxt — K 5o Jx Bt"- Koo — 5 Tazot
au,j *uj
— 7 + & (8) — Wi+ RG( E g U, D) (1.2)
é‘qu d%u Ju
6—,;;§~-m-—-—+g; () + pra— -+ UGF (W tuy, o U, 1)
(i=V=1,;=12

forx =1,

The specified functions f;, g;, g;*, Fj, G; and Gy* in Egs, (1.1) and (1,2) are con-
tinuous and I'-periodic in the time ¢; moreover, the nonlinear functions F;, G, G;*
are analytic in the argument z, the small parameter |, the function u;, and their first-
order partial derivatives u;,, s with respect to 2 and ¢ , Here and below the plus
sign in the gyroscopic terms with double subscripts applies for j = 1 and the minus
sign for j = 2, The coefficients p, 0, ®, %, %,, ¢, K,, K,, m are constant positive
quantities, The nonlinear functions F, G; and Gj* can depend in individual cases on
partial derivatives of higher than the first order, but this merely complicates the expres-
sions without introducing any additional difficulties, The permissible slight asymmetry
of the gyro system is allowed for by the small linear terms referred to the functions
F;, Gj and Gj*.

Equations of the type (1.1) and (1.2) describe, among other things, the motion of
ultracentrifuges, flexible rotors with attached masses, etc,

Let us assume that boundary value problem (1,1), (1.2) has a periodic solution
u;° (x, 1) which can be determined either in exact (closed) form or by one of the appro-
ximate methods, We are to investigate the stability of this solution,

Setting E; = u; — u;°, we find that functions §; must satisfy the equations in varia-

tions
3%, E g ‘
“55% + 0 L pn oL = P [F] (1.3)
where
§;=08;/0x =0
for z =0, and
o' ag o,
5—5;:]“ = — Ky 35— axazﬁ +- 2JK()O) g’ﬂ — ¢ 5 — Wk e axat + uP; [G5]
9%; 9% 5,
C’%zm%"ﬂ%“zgﬁ%wa [G*] (1.4)

for £ = [ . The homogeneous linear operator P { ] is given by the expression
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B=1,2
The parentheses in (1, 5) mean that the derivatives are computed for unperturbed
motion,
For p = 0 the natural frequencies and modes of the bending oscillations of a linear
gyroscopic system can be found by setting
L =Y.z M) e, & =i¥,(z, M) (1.6)
The solutions of Egs, (1,3) for p = 0 and Y; (0, ) = Y,/ (0, A) = O are

Yj(z, M) = GU (kz) + D; V (kx), k* = p&* (j =1, 2) (1.7
where C; and D; are arbitrary constants and U (kz), V (kz) are Krylov functions,
For t = ( expression (1,4) yields a system of homogeneous linear equations in the
arbitrary constants C; and D;,

a11Cy + 4Dy — 4130y — a,Dy = 0,  a3,Cy + a3Dy = 0
— a13Cy — ay Dy + a0y + ayDy = 0, a3:,Cs + @Dy = 0 (1.8)
4y = kS — kT (K\A* —¢), ay, = ok*V + mAU, ays = KooAhkT

Qe = Ok*T — KU (KA%* — o), Agq = OK>S -+ mAV, ayy = KyorklU
1.9

Here and below the Krylov functions S, T, U, V are computed for the argument
kI, which we omit for the sake of simplicity of notation (*), The natural frequencies
can be determined from the condition of equality to zero of the determinant of system
(1. 8),

11 Qp — Q3 — Oy
— @3 0y @y G2l _ ¢ (1.10)
oy Qag 0 0
0 0 (1231 QAge
which yields that two trauscendental frequency equations
Ay = G11055 — Q12031 + 3033 — U510y = 0 (1.11)
Ay = @118 — 839851 — Gg2h3 + a8y = 0 (1.12)

or, in expanded form
(KA —¢) loh® (UV — ST) 4+ md? (U? — VI)] + ok? [p (8 — TV)+
+ mk(SV — UT) 4~ K,ork 6k (ST — UV)+ mX2 (TV — U% =0

It is clear that all the roots of Eq, (1, 10) are real numbers, and that the positive roots
of Eq, (1,11) are equal to the negative roots of Eq, (1.12), and vice versa, We infer
from (1, 8) that D _ D an C. _ dn—andn o

C: = C, as ' 27 G133 — ap6n
so that,by (1,7), Yy = ~Y,=Y* for every root of Eq, (1,11} and Y, = Y, = Y*
for every root of Eq, (1.12), where

1

*) We recall that the Krylov functions of transverse oscillations are

§(a) = 0.5 {cha -} cosa), T(x) = 0.5 (sha - sina}
U{a) = 0.5(cha — cosa), V(a) = 0.5{sha — sina)
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Y¥(z, &)= U {(kz) — @nas, 'V (k) (1.13)
to within a constant factor,

Substituting the values of Y'; (z, A) into (1.6) and separating the real parts for the
imaginary, we see that the real roots of Eq, (1,11) or the negative roots of Eq, (1, 12)
correspond to forward precession of the gyro system axes, and the negative roots of Eq.
(1.11) or the positive roots of Eq, (1,12), to its reverse precession,

Let us denote one of the natural frequencies of the linearized gyro system which is not
a multiple of 2% / 7 by A, and let us assume (to be specific) that A, is a simple root
of Eq, (1, 11). In order to find the characteristic exponent & close to iA, of equations in
variations (1, 3) and (1. 4), we set

Br=u (p oz ) ety G = iy (w, 7, 1) e (1.14)
where ¥; (1, %, £) , j =1, 2 , must be T -periodic functions ;we then seek ot and
y; (g, z, 1) in series form,

o =ik + pa+ play + o oy (e oz 8) =y (z, 0+ py® -+ (1.15)

Equations (1, 8) and (1, 4) imply that the functions y;° (z, t) must satisfy the differ-
ential equations ay,;

C oAyl - (.10
yi - ayf/ 0x w=

where

for £ =10,and

i 3y,
Bilyl— Koo (8, 25— sty — 0, Buysi=0 (D)

for z =, The same equations also imply that the functions y;¥(z, t) must satisfy
the differential equations

3y (D dy.° .
Tl e p ALy = — (2ap b ) (g )+ 0R ] (148)

and the boundary conditions

35‘(-%) a 'Q/(Qt
Bl [yj(‘)} "‘"!K()U) (;"S 8];:‘ — i Gx]é)z ) B
Sy .0 dy° . 3@;'{ e s
= —(2aK; + %) (éks %—- -+ 3—5%;:—) —iKyoa a”;g iR [G]
T e
By (301 = 1R 1Gy*) - (2am 4+ 25) (g + o) (1.19)

The linear operators in Eqgs, (1,18)—(1.19) are given by the formulas

A[]“( )"2‘}“25}‘335?0&“)[]
Bill =s (1 + KAL) 4oz ]

Bill=—omsl]—mA[] (1.20)
Rl = 3 i {os° (52 ) + 2 () + (s + ) (=)t

Let us suppose that in addition to the root Aq, Eq, (1,10) also has simple roots of the
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form Ay = A, + 1, ®, r = 0, 1, ..., v, where n, are positive or negative integers,
where the first ' roots A, ..., A, belong to Eq, (1.11) and the remaining y — 7’
T00ts Ag 741y -+-5 Tgy belong to Eq, (1,12), The boundary value problem for the func~
tions y,° (z, t), j = 1, 2 then has T-periodic solutions containing p -+ 1 arbitrary

constants /., M

y
po = D MY (@) + 2 MY (2)
r==0 . ro=r ﬂY (121)
g = — O MY (@) D) M"Y (2)
=0 repr 4l

Here Y, (z) are the eigenfunctions corresponding to the roots A4 and defined by
formula (1,13), where ny = Oand A, = A,. Each of the functions y;(V (z, #) is

obtainable as a sum of Z'-periodic functions,
Y

Ui (@ t) = 2] 23, (2) € - 22, 1) (1.22)

r=9

By virtue of (1,18),(1.19) and (1.21) the functions z;. (z).must satisfy the ordinary

differential equations ) (2 VYA )
-3 + 191 (2ap + %) Y hee M, (r <71’
IV 27, . jl-ip.
R {—i<2ap bR Y heM, >y (2
where
2= z.’ir' =0
for =0 ,and
62;," — (Kihg? — €) 25" — Ko@hg 251 = )
o {+ BLY (02K iy — Ko@)+ widgr] (1 <7
A ,
i D\ i, Y [0 2K ohr + Ko0) £ wihee]  (7>T)

— [ (2am 4 MZ) }"erer[r (r < 7")

%, . fl-ig. =1,2)
szr”’ + m}‘sr Bjp == it Miny © {‘i‘ l(2am 4+ %) }"ersrA[r (r> r') v
1.24
for z = [ ; the functions z; (¥, !) must satisfy the equations ( )
o
84z, .
Th feAlml =i D pra(a)en (1.25)
where =
Z;= 625/656 == ()
for x =0, and
azjj:l . alzjj:] i < it
By (5] — Koo (b~ — i ht) =i 3 gy (l)en
oo’ n=-00
By [2;] =it D) qju* (1) einet (1.26)
N==00

forz=1,

The primes next to the summation symbols mean that n =& n,.

In Egs, (1.283)—(1.26) Pjn (%), ¢jn(x), ¢jn™(x) are the coefficients of the Fourier
series of the functions R [F;], R [G;] and R[G,-*], respectively, where the operator
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R1] (by virtue of (1,20) and (1. 21)) is given by the formula

[] _.Z,M Y (g — i)+ Yo' (d‘ — i )+ (1.27)

r=0

"o R
+z'>»ersr(a%, E IR N A

TP+l
,/ 0 R a .. 0
FV (g ) e (i iy )1

All of the partial derivatives of the functions F;, G; and C;* must be computed for
unperturbed motion, We infer from (1.21) that the Fourier coefficients p;, (z), q;, (x)
and ¢;,*(z) are homogeneous linear functions of the constants- M, Specifically,

T

1P —ino & vs
Piny (T) = TS R[F| ™ dt = S My pjyy (x)
(13 k=0
Y Y
Giny () = D) MyGiri (%), Qiny (2) = 2 M i@ ()
k=0 k=0

The solutions of Egs, (1.23) satisfying the boundary conditions for = 0 are
Zir (.2;) = erU (er) -+ Der (er) -+ iﬁﬂﬂ{r?"r (:l‘) (zap + %) +
Y

+ il—j Z j}jk‘Fjrg (x) (kr4 = p}”srz)
§==0

where C;. and Dj, are arbitrary constants, and

X
¥, (@) = =V k@ =D Yo Q) dl]
ar h
5
s (@) = 55 |V k(@ —8) ps ()] (1.28)
0
Boundary conditions (1, 24) yield the system (1.29)
a1 Cy, + 1Dy, — 13Cs, — ay Dy, = by, (a), 81C1p - 833Dy, = by, (a)

—ay3Cy, — Dy + 1105, + ay3 Do = by, (a), a3 Cor - G320y, = by, (a)

Here the coefficients a;;.are given by formulas (1, 9) for A = A, and b;, are linear
functions of the required quantity @ given by

bj, = WM {(2ap - %) [(Khgp? — Kooy, — )W, (1) — oW, (D)) - (1.30)

+ Yo (1) [0 (2K 1hyy — Ko0) + %ihgp )} + 8179 DV M dy,
h=0p

bivor = — 2 UM  {(2ap + ) [, (1) ++ mhg,2Y, (1)] 4 (2am +

e ) Ay Y g (D} 4 175 D) M,

h=g
for r < 1’ and
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by = — iM, {(2ap -+ %) [(Kihyr? + Kogohy — ) ¥, (1) — o¥," ()] -+

v
+ Yo' (1) 18 (2K hyr + Ko©) + 23hye 1} + 1179 D) M ydip, (1.31)
h=0

bjroy = iM, {(2ap + %) [6V,""" (1) + mAy* ¥, (D] + (2am + %3) Ay Y ()} +-
47 D) M dipn (=12

h=0
for r >r',
In formulas (1, 30) and (1, 31) we have

djp= T;rh (D) (Kihg? — ) — G“I’;r& )+ Gjrn O — 191K g0hgr ¥ j1,0m 03
din = @n (1) — 6 n (8) — mhy 250 ()

Since A4 is a root of Eq, (1.10), it follows that the determinant of system (1,29) is
equal to zero, and that Eqs, (1.29) are compatible if

an aia — O3 by,

— Q13 — Q4 ayy b?r =0 (132)
Qa1 313 0 bs,
0 0 2% by,

or
P, = By My + BuM, + ... + (B,, — ad,) M, + ... + B;M, =0 (1.33)
where B,,and A, (r, i = 0, 1, ..., ¥) are known complex numbers, Hence, the quan-
tity @ must be a root of the algebraic equation

By — a4, Bo ... By
BlO Bll _aAl Bl'Y :O (1.34)
BYO B\'l . BY‘Y—aA‘(

Let us suppose that Eq. (1, 34) has simple roots only. Then, as we know, it is possible
to obtain arbitrarily exact expressions for all ¥ 1 characteristic exponents correspond-
ing to the proper values A, of generating system (1. 3), (1. 4). However, the stability of
the unperturbed periodic solution can usually be established on the basis of the first
approximation, Expression {1, 33) yields the quantities J/, for every simple root a of Eq,
(1.34); one of these quantities, let us say M, can be chosen arbitrarily, and

d(Pq, ..., P) 40
3 (M, ..., M, a

after which boundary value problem (1.25), (1. 26) defines the 7 -periodic function
z; (z, t)to within a constant, since the frequencies nw are not natural frequencies for
n == n,.

In a special case Eq, (1.10) may not have roots which differ from A, by quantities
which are multiples of w; this simplifies the determination of the coefficient 4 in expan-
sion (1.15) of the characteristic exponent close to iA, . The periodic functions y;° are
equalto y,% == — y,® =Y, instead of being given by (1.21), and each of the functions
y;V (z, t) can be expressed as a sum of two periodic functions
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¥V (z, t) = Z; (z) + z; (z, ?), one of which, Z; (z) , does not depend on time,
while the average value of the other, z;{x, £} ,is equal to zero, It is easy to show that
the quantity @ must satisfy linear equation (1, 32) in which the elements of the last
column are given by

b = 271 {(2ap + %) [(Kikg® — Kowhy — ) W(1) — ¥"(1)] -+
+ Y (D[ (2h Ky — Koo} + %A1} -

T
+ (K — ) Wy () — 0¥ () + -\ RIGiI} — Kook ¥ (O
birg = — 12971{(2ap + %) [F" (1) + mALY (D)] 4 (2am + ) AY )} +
T
4 m{.}P_S R{G#*]dt —mA Y3 (1) — 5" (5)} (1.35)

0
X

¥ @)= =\ V ik — 01 Y @)

L]

k
3
pA T

3

‘F.j {.’E) =

T
S V [k (z — ) R [F;] dtdg)

Ry B

The operator R [ ] is given by
1 {8 A B 3 .9
Riiw{ys(x)iﬁ;—i"gg>fys {95)('57[;—-113;-‘) b

2x
+ Y (e g )
instead of (1,27).

The roots of Egs, (1. 10) may include resonance roots given by i, = -~ n, 0, v ==
= 1, ..., B, where n, are integers whose signs are chosen in such a way that A, =n, @
are the roots of Eq, (1.11),and — A, are the roots of Eq, (1,12). In the resonance case
the characteristic exponents must be computed in the form of the series ¢ = pa -+
+ pn?ay -+ ... rather then in the form (1. 15); this means that Eqgs. (1.16)—(1,20) all
remain valid if we set A, = O.

The boundary value problem for the functions y;® in the resonance case has a perio-
dic solution which depends on 28 arbitrary constants M,

Y= 0 Yo (2, hy) (Mpe™' 4 Moypge™")
S |
<]

¥ = D) Vo (@ o) (— Moe™ 4 Miyuge™™)

v==1

The eigenfunctions Y, (z, A,) in this expression can be determined from formula
(1.13) by setting A = A, = n,®. We can express each function y,()(z, ) as a sum
of 2 / w-periodic functions, 4

Ui () = X (355 (2) €™+ Z00s (@) € ] £ 252, 1)
v 1
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The subsequent argument is the same as that above and need not be repeated, We
merely note that the quantity a and the constants My ... . M 28, one of which can be
chosen arbitrarily, must satisfy 28 Eqs, (1. 32); the coefficients &,, in these equations
have the same structure as (1, 30), (1, 31), where the operator R [ ] in the resonance
case is given by the formula

B
Rt =5 v (s i) ¢

b 2
8
_ 3 .8\ it 4 A
+ l;»va (—a—u-; — laTm')}[ ]r}—\éle v /1Iv+ﬂ {Yv<6u1+ i au_!> +
F) . 2 . 0
) —iwere (i + iU

,( @ .
+ 7Y, (5;1: + i

Note, Elastic gyroscopic systems can be more complex than those considered here ;
specifically, they may contain discrete perameters not only at the ends of the interval
0 << z < I, but also at several points inside it; the matching conditions at the boundaries
between domains and the dispositions of the latter can be quasilinear, To investigate the
stability of the periodic solutions of such gyro systems we must introduce matrices of the
discrete parameters and elastic domains between them, Multiplying these matrices, we
obtain equations of the form (1, 34) for the quantity « in expansion (1,15) of the charac-
teristic exponent,

2x

2. As already noted, the proposed theory of stability of the periodic solutions of quasi-
linear gyro systems can be used, among other things, for studying the dynamics of flexi-
ble rotors, The nonlinear functions Fj, G;, G;* in equations of motion (1.1), (1.2) are
general enough to enable us to investigate the stability of periodic oscillations of flexi-
ble rotors or their relative equilibrium state under the action of numerous factors which
can give rise to almost-periodic autooscillatory states, As we know, these factors include
internal and external friction, asymmetry with respect to rigidity and to the moments of
inertia, various hydraulic forces, etc, In addition, the nonlinear equations of motion of
the rotors can have several periodic solutions, and it is extremely important to determine
which of them are stable,

As an example let us consider one such problem which has received almost no atten-
tion in the literature despite its considerable practical importance,

An imperfectly balanced flexible rotor rests on several isotropic elastic supports, some
of which have nonlinear characteristics, These characteristics are sometimes introduced
intentionally (e, g, in ultracentrifuges) in order to prevent hazardous vibrations of the
rotor over a broad range of angular velocities (in which case the supports in question
act as nonlinear dampers); in other cases the supports are nonlinear for technological
reasons, We assume that the system is quite complex, In addition to the distributed
mass of the rotor we must also take into account the elements attached to it (the longer
ones can be fastened to the rotor at two or more places), We are to determine the possi-
ble periodic variation states of such a system and investigate their stability, For simpli-
city we shall take into account only the nonlinearity of the supports themselves, neglect-
ing the other forms of nonlinearity ; in addition, we regard the moving parts of the sup-~
ports and the elements in direct contact with them as bodies of small dimensions, arbit-
rarily referring to them as "disks",
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Let s be the number of nonlinear supports and I; < I,.... < I, the abscissas of their
locations along the length of the rotor, We introduce the complex deflection w (z, t) ==
= u, (z, t) -+ iu, (z, ), where u;j (z, t) are the projections of the deflection of the axial
line of the rotor on the fixed coordinate planes zy and z:. The function w (r, #) must

satisfy
1) the following differential equation in each domain:
0w o%w duw
El 55 +ep35m +% 57 =pwe (z) expi[wf + 0 (z)] o0

2) the following nonlinear matching conditions for = == /. (r = 1,...,8) ¢

ow(f -0 ow il —0) Suw
w(l, + ) =w{l, —0)=w, r — ’ o

: Jz = dz = oz
Fw(l, 4 0) Fw (i, —0 P, ) dw,
Er ox* - dz? = Ksr zar — (0Kor g +
Fw ow ow, | dw, [-1
r r r r
"y Bzar L ( 7% ) 9z | 0z

975 92 = (2:2)

EI [ Ow, (L. 40)  Pw(l, — “)]
8‘-‘wr Sw
=—m, g — %, 5 — Q. (lw, Nw |w, [+ me otexpi(ot 4 0,)

3) four boundary conditions which depend on the mode of support of the rotor ends;

4) various linear matching conditions at the sites of the rigid or elasticomassive sup-
ports with a linear characteristic, concentrated masses, etc,

In Egs. (2, 1),(2.2) I, £+ 0 are the abscissas of points on the rotor axis to the right and
to the left of the point z = /, and infinitely close to it; & (z), &, are the eccentricities
along the rotor and disk; 9 (x), 0, are the angles between the eccentricity vectors and
some plane rotating together with the rotor at the angular velocity ; m, is the mass of
the disk; Xor, K1, are its polar and equatorial moments of inertia; EI and p are the
constant bending rigidity of the rotor and its mass per unit length; x, x;, and x,, are
the damping factors, The reaction of the support is directed opposite to the complex
deflection w, : its magnitude is a nonlinear function Q{jw,|) of its absolute value, Simi-
larly, the vector of the moment in the support is opposite to the complex-angle vector
dwr/8z 3 its magnitude is a nonlinear function L. {] dw,/3z{) of its absolute value, For
my = Ky = Ky = 0 we obtain the conditions of matching without allowance for the
mass of the nonlinear support itself,

The linear matching conditions (which include the boundary conditions) will not be
written out, The simplest of them can be obtained from (2.2). Thus, in the case of
elastic supports with a linear characteristic Q = ¢|w| and L = d|0w/dz |, where ¢ and
d are constants; if there is a disk but no support at the boundary between two adjacent
domains, then Q = L == 0, etc,

Setting w (z, t) = W (x)e’! in (2.1) and (2, 2), we obtain the differential equation

IV () B () P 0 (x) . /fi’_’( e 2.
W (2) — KW (2) = Fre (@) @, k= EI) — 4wa) (2.3)
for the function W (2) and the following nonlinear matching conditions for z = . ;

W+ 0 =W, —0)=W,, Wi, =W, —0h=W/
ELIW (b 0) = W, — O)] = [ K, + fwrsy, + L (W, ) | W, [ W,
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EL W™ (L + 0) — W (I, — O} = [m,@® — iwits, — Q, (| W, )| W, [ W, + mye,0%e T
(K, =Ko, — Ky,) (2.4)
where the primes denote the derivatives of the function W with respect to z.
Let us denote by X (z) a vector (column matrix) whose components are equal to
W (z), W’ (z) EIW" (z), EIW" ()}. Equations (2, 3) and all the matching conditions
are linear over all the intervals 0 Cz <ly,...,lp L2 <dp 1 (r=1,...,5) ; the vectors
X140 and Xj,,,~0 are therefore related by the matrix equation

Xy = P (@) Xipso + 1 2 (@) (2.5)

where the vector |px"? (@)]| (4 X 1) and the fourth-order square matrix || p4;" (o) | can
be determined by the standard methods of the theory of linear oscillations; specifically,
the matrix || pxi ) (@) | is a product of the matrices of the elastic domains, discrete
masses, linear supports, etc, , over the interval I, < 2 < Irs1-

The basic unknowns are the complex deflections W, and angles of rotation W,’ of the
Totor cross sections over the nonlinear supports (r == 1,..., s). Satisfying Egs, (2, 3), the
boundary conditions at the left end of the rotor and all the linear matching conditions
over the interval 0 <{xz < Ij, and then eliminating the initial parameters, we obtain the
following expressions for z = I, — 0

EIWl' = as;Wl —[‘ ﬁle, + d,3, EIW]_"' - 0541W1 + §¢2W1, + 2 7%

where ayy, Bsy and oy are known functions of the angular velocity ®. By virtue of (2,4),
we can now express the vector X («) for z = I; + 0 as a sum of the product of the co-
agulated matrices and the vector # ,

E,
=} 2 x i+ 2.6
i
where £, is a second-order identity matrix,
I s, Bat -+ @K1+ fown + L (| W ) | W' [
gy - Ma* — ik — Qu (| Wil )| Wi |™, Bal’
Hy =190, a3, a4 4 mier0® exp i61}

1440

Wi
| Wy

hlz

Next, we infer from (2, 5) and (2, 6) that
X, =MOWi - EOWY + Hy
Here the vectors Af?, 8:*) and H,_, are given by

AP =]y ® 41 ®Qu (| Wiy) | W]
B =B + 8u®Ly (| Wy ) | Wy |72 Hyo=1%®]
where k = 1,2,3,4 are the row numbers,

Proceeding from left to right and carrying out the same operations, we can readily
show that the vector r-1 -
X, = 2 AW, e POwy+Hy,_, 2.7)
v=1

A =] ™ 4 1,,00Q, (iW DIW I,
B, =B, + 8, ML, (| W, DI WL Hyzg = | o 0}
and the vector

I~

0, o ,...,E:

- <t gy v oo Y A Hy 2.8)
Xipro “grl, g,2,.,.,g”“ M r r+e
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where
a0+ 1,000, (IW, DI W, [ By 8, 0L, (| W,/ ) W, |
8o =\l o, (0 L O, (W, W, [ B +8,00L, (1w, w7
Ji 0K, + ionay + Ly (1 W, )] Wy 7 [
| mu0* —ian,— Qp (| W,|) ‘Wll o Y

Hipo=1{0,0, 2", 0" + m s’ exp if }

The functions o, B0, a, " of the angular velocity @ in the above formulas can
be determined by the familiar methods of the linear theory of the bending oscillations
of rotors,

Let us denote the first and second rows of the fourth-order identity matrix £, by &
and e, respectively, From the conditions of equality of the complex deflections and
angles of rotation in the cross sections = = [, — 0 and z = (. - 0 we obtain the system

of 2 (s — 1) equations , (Xlr—; 0" Xl,.—o) = e (Xlrm - Xz,.-;;) =0 (r=2,...,5 (Y

Let us set W, == d, exp ig, W, = B, cxpiy,, where the amplitudes 4,, &, and the
phases ¢, P, are the unknown (required) real numbers; Eqs. (2, 9) now become
r-1
S (A2, 00 4 1, 0Q, (Y] € 4 [BB) + 8, 0L, (B)] ety =i e
;‘ll i iy
LA 2, 0 + 1, 0Q, (A)] €+ [BB) + 8, (0L, (B ) = B, e”r
v=1
Let us add to them the two boundary conditions at the right end of the rotor, Separa-
ting the real and imaginary parts, we obtain 4s equations from which we can determine
the amplitudes 4,, B, and the phases ¢,, ¥, (» == 1,...,5). There can be several num-
bers of solutions ; each of them corresponds to a specific shape W (z) = A (z) exp ip (x)
of the elastic rotor axis and to a specific periodic oscillation
u® = A (z) cos [0t + ¢ ()], uy® = A () sin [0t + ¢ (z}] (2.10)
Exact closed~form solutions (2, 10) should be tested for stability, The small perturba-
tions &; = u; — w® (j = 1,2) must satisfy
1) the following differential equations in each domain:
0%, 7E; 9E; ;
El 5 +p g +% 5 =0 (211

2) the following matching conditions at the nonlinear supports for z = I, (r= 1,...,s):

G (U 40 B — )

57. (17‘ -}— “) == g",/ (ZI' - - “), O Lz Iz
OE; (L. + M FE; (L, —0) 0%, . &E; dE;
jvr 207 o e 93 pe A . i
El[ oz - a1 ] = Ky g — o Ke 05 4 G5+
1 9%, oL, (B,) 1 og;
Dl ”,9“; L By +—5 |+ 5 |55 #icos2(wi49,)—
9£~+‘ . 1 L. (B,)
_ 614 sin 2 (0t -+, )l [*B-r‘ L. (B -—“‘-;ﬁ;f"-]
0%, (f +‘ 0% (1, — ) FE; o, 1 1 aQ,
El[ - az° ]:— ™ T e g [‘1}' Qp(er)+ 52',} -
— L{E E‘?g cos 2 ((x)i +q3 }~ sin 2 0.{_&» N )} ...3.. Q (4 \ M (G==1,2) («‘) 19y
2 ST e G T, O () - 9., WIS A
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where the plus sign in the subscripts applies for 7 = 1 and the minus sign for j = 2;

3) the same boundary conditions as the functions u; (z, 1);

4) the same (but homogeneous) linear matching conditions as the functions u; (z, 1)
at the sites of the concentrated masses, rigid or elasticomassive supports with linear
characteristics, etc,

It is easy to show that relations (2.12) are equations in variations for nonlinear match-
ing conditions (2.2) for z = [, Unlike the remaining boundary conditions for the per-
turbations &;,(2,12) contains terms with n / o -periodic coefficients, If the modulation
of these coefficients is not large, then characteristic exponents {1,15) can be determined
by the method of Sect,1 with allowance for the appended Note,

Translated by A, Y,

PROBLEMS OF OPTIMIZATION WITH CONSTRAINTS
IMPOSED ON THE PHASE COORDINATES

PMM Vol, 34, N1, 1970, pp.127-131
A,S,SEMENOV and V, A, TROITSKII
(Leningrad)
{Received April 1, 1969)

We consider the problems of optimization of control processes with first and higher order
constraints imposed on the phase coordinates [1~3], We establish conditions which make
easier the determination of the point at which the phase trajectory leaves the boundary
of the region of admissible variation of coordinates,

1, Statement of the problem, The problem studied in [2, 4] was the fol-
lowing, Out of the continuous functions =z, (), (s = 1,..., r) possessing piece-wise con=
tinuous derivatives z; (¢) and out of the piece-wise continuous controls uy (1), (k = 1,..
+oss m) satisfying the differential equations

gs = x5 — Ja {2y u, &) = 0 (s = 1,... n) 1.1
on the interval &, T}, the relations
Ve=Yplz u, =0 (=1, r<m (1.2)
the inequality
d@ <0 1.3}
at the ends of the segment {4,, 7] and the conditions
g = @iz (f), ter 2 (D), Tl=0(=14,..., p<2n-+1) (1.4)
to find those, which minimize the functional .
I=glz (o to, 2(T), T1+ fo(z, u, 1y (t.5)

13
Here z and u denote the respective sets of phase coordinates z;.... &y and controis
Ugssoe U
In such problems the optimal trajectory may include segments belonging to the bound-
ary of the region defined by the inequality (1, 3). In the following, we shall concentrate
our attention on such segments,
If a segment of the majectory lying on the interval {¢, %] belongs to the boundary of



