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The stability of periodic solutions of quasilinear elastic slightly asymmetric gyroscopic 
systems with distributed and concentrated parameters is considered, The motion inves- 

tigated is described by a system of partial differential equations ; the boundary conditions 

and matching conditions at the sites of the concentrated parameters also take the form 
of quasilinear equations. The nonlinear functions in the equations of motion and in the 
boundary conditions are assumed to be of sufficiently general form ; this makes it possible 

to investigate the stability of the periodic solutions under the most varied perturbations. 
It is assumed that some of the natural frequencies of the linearized system can be criti- 

cal or resonance frequencies. The gyroscopic effect of the distributed mass is assumed 

to be negligibly small, as usual. 

The periodic oscillation states of unbalanced flexible rotors, some of whose supports 
have nonlinear characteristics, are constructed as an example. The equations in varia- 

tions are written out and it is shown that their stability can be investigated completely 

by the proposed method. 

1, Many problems of applied mechanics involve the action on quasilinear elastic 

gyroscopic systems of periodic forces whose frequencies are usually multiples of the 
angular velocity 61 of the gyro system rotor. Their equations of motion have periodic 
solutions with the period T = 27~ / o; however, these solutions may turn out to be 
unstable for various reasons, so that almost-periodic autooscillatory states (not always 
permissible ones) arise in the gyro system. The conditions of stability of the periodic 
oscillations therefore assume considerable importance. 

The motion of elastic gyro systems is described in the more complicted cases by a 
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system of nonhomogeneous quasilinear partial differential equations with nonhomogene- 

ous quasilinear boundary conditions. Without limiting generality, let us consider the 

simplest such system, 

Let the functions uj (5, t), j = 1, 2 over the interval 0 <x < 1 satisfy the qua- 
silinear differential equations 

and a%&. 
3*1 _+_ ,$K,o ~ _ 

a.& 

(1.2) 
PUj _ aJrl. 

6 - - m $ + gi* (t) + p.x, 2 -i_ pGj* (p, t, zbl, . . . , u.)~, 1) 3x3 

(i -= Jr-T, j := 1, 2) 

for 5 = I . 

The specified functions fj, gi, gj*, Fj, Gj and Gj” in Eqs. (1. I) and (1.2) are con- 
tinuous and T-periodic in the time t; moreover, the nonlinear functions Fj, Gi, Gj" 
are analytic in the argument X, the small parameter p”, the function uj , and their first- 

order partial derivatives z+., 24~~ with respect to z and t , Here and below the plus 
sign in the gyroscopic terms with double subscripts applies for j = 1 and the minus 

sign for i = 2, The coefficients p, o, X, x1x8, c, K,, K,, m are constant positive 
quantities. The nonlinear functions 8’i, Gj and Gj* can depend in individual cases on 

partial derivatives of higher than the first order, but this merely complicates the expres- 

sions without introducing any additional difficulties. The permissible slight asymmetry 
of the gyro system is allowed for by the small linear terms referred to the functions 

Fj, Gj and Gi*. 
Equations of the type (1.1) and (1.2) describe, among other things, the motion of 

ultracentrifuges, flexible rotors with attached masses, etc. 

Let us assume that boundary value problem (1, l), (1.2) has a periodic solution 
zl;j” (x, 1) which can be determined either in exact {closed) form or by one of the appro- 
ximate methods. We are to ~nv~tigate the stability of this solution. 

Setting F& = ui - r&j’, we find that functions & must satisfy the equations in varia- 

tions 
z?.& +p 

a:<. @* 
--$ +px+=VWA (1.3) 

where 
gj=agj/aX=O 

for x = 0, and 

a!6 * 
cJ3=- 

3x2 
K 

a3faj 
1 axw 

pxx a + I.@ fGj1 

for z = t . The homogeneous linear operator P [ J is given by the expression 
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The parentheses in (1.5) mean that the derivatives are computed for unperturbed 
motion. 

For p = 0 the natural frequencies and modes of the bending oscillations of a linear 
gyroscopic system can be found by setting 

El = Y, (x, h) .&A” * E& = iYz (z-, h) @At (f.6) 

The solutions of Eqs, (1.3) for p = 0 and Yi (0, 3,) = Yj’ (0, h) = 0 are 

Yj (x, h) = cju (ks) + D, V (kz), k4 = p3i2 (j = 1, 2) (1.7) 
where Cj and l?j are arbitrary constants and u (k.z), V (kx) are ~rylov functidns. 

For p == 0 expression (1.4) yields a system of homogeneous linear equations in the 
arbitrary constants ci and Dj, 

q,C, + fll,& - Ul,C, - a,,& = 0, a& + a,,& = 0 

- 
al3Cl - ad1 + a&, + a12n2 = 0, a,$, + a22D2 = 0 (1.8) 

all = crkzS - kT (Klh2 - c), azl = crk?V + mh2U, al3 = K,ohkT 
al2 = ok2T - kU (K,h2 - c), a22 = ok3S + mh2V, a14 = K,dkU 

(1.9) 
Here and below the Krylov functions S, T, U, V are computed for the argument 

kl, which we omit for the sake of simplicity of notation (*). The natural frequencies 
can be determined from the condition of equali to zero of the determinant of system 

(I*% 
a11 a12 - 63 - a14 

- al3 - a14 a11 a12 = 0 
a21 a22 0 0 

(1.10) 

0 0 a21 a22 

which yields that two transcendental frequency equations 

AI = ana22 - a12aZl + a2+b - a2+14 = 0 (1.11) 

A2 = alla,, - a12a21 - a,,%, -I- ad% = 0 (1.12) 

or, in expanded form 

(K,P - e) [ok3 (UV - ST) + m3L2 (U2 - VT)] + d2 fp (Se - TV)+ 

+ mk (SV - UT) -i_ K,wXk [ok3 (ST - UV) + ml2 (TV - Us)1 = 0 

It is clear that all the roots of Eq, (1.10) are real numbers, and that the positive roots 

of Eq, (1.11) are equal to the negative roots of Eq. (1.12), and vice versa. We infer 
from (1.8) that DI D.,, a21 UIIU.~~ - ap2ag1 

-=c,=---~* Cl 
c, = 

alsU.>s - al.sa:l G 

so that, by (1.7), Y, = -Y, = Y* for every root of Eq. (1.11) and Y1 t Y2 - Y* 
for every root of Eq. (1.12). where 

*) We recall that the Krylov functions of transverse oscillations are 

S(a) = 0.5 (chr + cosa), T(a) = 0.5 (sha + sina) 
U(a) = 0.5(cha - cosa), V(r) = O.S(sha - sina) 
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I?-* (x, 3”) = u (kx} - a,,a,,-‘V (iiz) f.1.13) 
to within a constant factor. 

Substituting the VLhlt% Of Yj (Z, h) into (X,6) and separating the real parts for the 
imaginary, we see that the real roots of Eq. (1.11) OK the negative roots of Eq. (1.12) 

correspond to forward precession of the gyro system axes, and the negative roots of Eq. 

(1.11) or the positive roots of Eq. (1.12). to its reverse precession. 
Let us denote one of the natural frequencies of the linearized gyro system which is nor 

a multiple of &X / T by &, and let us assume (to be specific) that h, is a simple root 

of Eq. (1. ll), In order to find the characteristic exponent a close to t&, of equations in 
variations (l-3) and (I, 4)? we set 

gt = WI f& 55 Q Ff, Es = &a (Ib, z, 9 eat (I.14) 

where fjj (p, x, t) f j = ,I, 2 , must be T-periodic functions ;we then seek tt and 

yj (p, 5, tf in series form, 

CC = ih, + fJ.Cl + fA’f$ + . . . . IJj (/A, 2, t) =z yj" (2, t) + pYj(' + *I* (r"i5) 

Equations (1,3) and (1.4) imply that the functions ~/j’ (x, t) must satisfy the differer- 
ential equations 

where 
(l.iO) 

for 5 = I _ The same equations also imply that the functions ~~(3) (2, t) must satisfy 
the differential equations 

and the boundary conditions 

The linear operators in Eqs. (1.16)-(1.19) are given by the formulas 

Let us suppose that in addition to the root A,, Eq. (1.10) also has simple roots of the 
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form A,, - I, + 72, 0, r = 0, 1, . . . . y, where n, are positive or negative integers, 
where the first r’ roots AlI, . . . , ksr’ belong to Eq, (1.11) and the remaining y - ?” 

roots hs,r,+l, . . . . &,Y belong to Eq. (1.12). The boundary value problem for the func- 
tions yj” (x, t), i = 1, 2 then has T-periodic solutions containing y + 1 arbitrary 
constants MP. T’ Y 

7-0 r--r’*1 

r= 

yz”= -2, M,e inroiYsr (5) t_ i !V rknrwtYsr (2) 
f=O &‘+1 

(1.21) 

Here Y,, (x) are the eigen~cti~s corresponding to the roots h,, and defined by 
formula (1.13), where no = 0 and hso = k,. Each of the functions yj(l) (x, t) is 
obtainable as a sum of T-periodic functions, 

yj(l) (2, t) = 2 Zjr (X) einrwt + zj txl t, 
l-=0 

(1.22) 

By virtue of (1.18), (1.19) and (1.21) the functions zj, (x).must satisfy the ordinary 
differential equations 

zir JV - ph,,azj, = il-jpj,, 
i 

$ izjtl (29 -$- x) Y,,h,,M, (r < r’) 
- i f2ap i- x) y,&X I$. > f) (1.23) 

where 
Zjr = Z&. ‘Z-7 0 

for x = 0 , and 

ozj, ” - (K,h*,” - c) Zj,’ - Kso?.,,zj;r = 

1 

+ isjflMJsr’ [a (2X.&, - K,o) + x&.] (r i r’) 

= i’-‘qh (‘) - Ld!f,y,, [a ( 2Klh,, j- KoU) -j- Xl&.,] (I* > r’> 

QZj,“’ + mb%r T=; i’%t, (0 i 

- NC1 (2am + lcz) h,,Y,,.l1, (r < r’) 
+_ i (2am + xz) ~,,Y,,~JI r (r>r’) 

(I-- it21 

for x = 1 ; the functions Zj (ST, t) must satisfy the equations 
(1.24) 

CT& 4: pA [zj] = jl-j “i pjn (5) f9n-t (1.25) 
r&z-;x, 

where 
ZjzdZjfdXZO 

for x = 0 , and 

& bql - ,Koo ! "j*l 
h, as - 

. a'zj*:1 
L -..-..- 

axat 1 
71=-W 

B2 [zj] = 71-j % qjn* (1) eirwf (1.26) 

for 2 = 1 . 
The primes next to the summation symbols mean that n # n,. 
In Eqs. (I. 23)-(r.26) pjn (x), gin(X), qjn*(x) are the coefficients of the Fourier 

series of the funCtions R [Fj], R [Gj] and RfGj”I, respectively, where the operator 
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R [ f (by virtue of (1.20) and (1.21)) is given by rhe formula 

(1.27) 
f=xl 

+ Y,,’ -& -j- i $- j 4. ia,,.y,, (k 7- g-)] I 1 ( 1X 2x 

All of the partial derivatives of the functions Fj, Gj and Ci* must be computed for 

unperturbed motion. We infer from (1.21) that the Fourier coefficients pjn (CC), qjn (a~) 
and ~~~~(~) are homogeneous linear fictions of the constants Mr. Specifically, 

h-=0 h-=0 

The solutions of Eqs. (1.23) satisfying the boundary conditions for X = 0 are 

Zjp (5) = Cj,U (k,Z) -+ Dj,V (k+) -I- irj+llu,Y, (Z) (2ap + X) + 

(kr4 = $L,,~) 

where cj, and LIj, are arbitrary constants, and 

Boundary conditions (1.34) yield the system (1.29) 

al&, --I- a,&,, - a,&, - a,*&, = hl, (a), %lCI, _:- aaJ.& -- b,,.(a) 

- ad%, - %4, + WA, + +J%, = bzr (4 iz,~C,, A- a,,&, == b,, (a) 

Here the coefficients a,j,are given by formulas (1.9) for h = A,,., and bi, are linear 
functions of the required quantity a given by 

bj, I- i’j+li%f ,. {(2~p I-- X) [ (K,$,,,’ - K,oh,, - c)Y,‘(l) - 6Y,“(Z)] + (1.30) 

-t Y,, (4 [a (2KlL - Ko@) + w%,l) + it-j 2 /l/h&,‘ 
h=o 

bj+e.r ̂- - i?jtlJllr ((2~p -f X) [sY~,~’ (I) + ~TZ~,,~Y, (q] + (2~~ + 
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bjr = - iM, ((Zap f x) [(Klh,r2 + .&,oha, - c) Y,’ (I) - aYrn (t)] -+- 

+ y,r’ (0 [a (2mb -i- Koo) + %Ll~ -!- 4 Mhdjrh (1.31) 
h=a 

b j+z,r = iM, ((2~ + X) [QYP”’ (4 + m%,rg% (01 + (2am -k ~2) by,, (41 + 

for r> r”. 

In formulas (1.30) and (1.31) we have 

Since h,, is a root of Eq. (1. lo), it follows that the determinant of system (1.29) is 
equal to zero, and that Eqs. (1.29) are compatible if 

a11 a12 - %s b 1r 

- k3 - all a11 bar =(-J 

a21 a22 0 bs, 
(1.32) 

0 0 a21 b Pr 

o;l, = B,fj MO + B,&f, + ..* + (4-r - aA,) M, + -.. $- &My = 0 (1.33) 

where BFiand A, (r, i = 0, 1, . . . . y) are known complex numbers. Hence, the quan- 
tity a must be a root of the algebraic equation 

B 00 - aA BOI . . . Roy 

B 10 RI1 - a Al . : . BI, 
.*...............I..... 

B YO BYI . . . nru-UA, 

=o (I.341 

Let us suppose that Eq. (1.34) has simple roots only. Then, as we know, it is possible 
to obtain arbitrarily exact expressions for all y + 1 characteristic exponents correspond- 

ing to the proper values h,, of generat~g system (1.3), (1.4). However, the stability of 
the unperturbed periodic solution can usually be established on the basis of the first 

approximation. Expression (1.33) yields the quantities &f, for every simple root a of Eq. 
(1.34) ; one of these quantities, let us say M,, can be chosen arbitrarily, and 

a (PO, . . . , p.J 
a (MO,. . . , M y_l’ 4 + O 

after which boundary value problem (1.25). (1.26) defines the r-periodic function 
zj (5, t) to within a constant, since the frequencies no are not natural frequencies for 

n =jk n,. 

In a special case Eq. (1.10) may not have roots which differ from h, by quantities 
which are multiples of o; this simplifies the determination of the coefficient Q in expan- 
sion (1.15) of the characteristic exponent close to i& . The periodic functions yj” are 
equal to yr” = - ys” = Y, instead of being given by (1.21), and each of the functions 
~$1) (x, t) can be expressed as a sum of two periodic functions 



Yjil’ (XT f> = zj (4 + zj (XI 81% one of which, zj f.r) , does not depend on time, 

while the average value of the other, zi (2, t) , is equal to zero, It is easy to show that 
the quantity a must satisfy linear equation (1,312) in which the elements of the last 

column are given by 

bj = izj+l (( 2ap -;- X) [(K&,2 - K&h, - c) \I!’ (I) - o’Ep”( Z)] --t_ 

The operator R [ f is given by 

~. +ia,r, L-i& [ ] 
instead of (1.27). 

( %t 2t >) 
The roots of Eqs. (1.10) may include resonance roots given by k,, = 3: n, CO, 2, = 

= 1 ) . . . . fJ, where rz, are integers whose signs are chosen in such a way that h, = n, CO 

are the roots of Eq. (1. 111, and - & are the roots of Eq. (1.12). In the resonance case 

the characteristic exponents must be computed in the form of the series cc = pta I_ 

+ +s -i- *** rather then in the form (I, 15) ; this means that Eqs. (1.16)-(1.20) all 
remain valid if we set AS = 0. 

The bounda~ value problem for the functions yj” in the resonance case has a perio- 
dic solution which depends on zj!! arbitrary constants &$ t 

The eigenfunctions Y, (x, &,) in this expression can be determined from formula 
(1.13) by setting h = h, = n,w. We can express each function y$t)f.zt 8) as a sum 
of 22-t I o-periodic functions, 6 
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The subsequent argument is the same as that above and need not be repeated. We 
merely note that the quantity a and the constants Mr, . . . , ik!,~, one of which can be 

chosen arbitrarily, must satisfy 2s Eqs. (1.32) ; the coefficients bi, in these equations 
have the same structure as (1.30). (1.31). where the operator R [ ] in the resonance 

case is given by the formula 

+ ih,Y, a ( _-- %t is ,,)]I I,+5 e-‘“~‘M,,s{Y,~~+i~)f 
7J=l 

+Y,' $--+i~)-ADYD($-+i$--)}[ 1 ( 1.X 1t 2t 

N o t e. Elastic gyroscopic systems can be more complex than those considered here ; 
specifically, they may contain discrete perameters not only at the ends of the interval 
0 < x < 1, but also at several points inside it; the matching conditions at the boundaries 

between domains and the dispositions of the latter can be quasilinear. To investigate the 

stabilitv ofthe periodic solutions of such gyro systems we must introduce matrices of the 
discrete parameters and elastic domains between them. Multiplying these matrices, we 

obtain equations of the form (1.34) for the quantity a in expansion (1.15) of the charac- 
teristic exponent. 

2. As already noted, the proposed theory of stability of the periodic solutions of quasi- 
linear gyro systems can be used, among other things, for studying the dynamics of flexi- 

ble rotors. The nonlinear functions Fj, Gj, Gj* in equations of motion (1.1). (1.2) are 
general enough to enable us to investigate the stability of periodic oscillations of flexi- 

ble rotors or their relative equilibrium state under the action of numerous factors which 

can give rise to almost-periodic autooscillatory states. As we know, these factors include 

internal and external friction. asymmetry with respect to rigidity and to the moments of 
inertia, various hydraulic forces, etc. In addition, the nonlinear equations of motion of 

the rotors can have several periodic solutions, and it is extremely important to determine 
which of them are stable. 

As an example let us consider one such problem which has received almost no atten- 

tion in the literature despite its considerable practical importance. 
An imperfectly balanced flexible rotor rests on several isotropic elastic supports, some 

of which have nonlinear characteristics. These characteristics are sometimes introduced 

intentionally (e. g. in ultracentrifuges) in order to prevent hazardous vibrations of the 
rotor over a broad range of angular velocities (in which case the supports in question 

act as nonlinear dampers) ; in other cases the supports are nonlinear for technological 
reasons. We assume that the system is quite complex. In addition to the distributed 

mass of the rotor we must also take into account the elements attached to it (the longer 
ones can be fastened to the rotor at two or more places). We are to determine the possi- 
ble periodic variation states of such a system and investigate their stability. For simpli- 
city we shall take into account only the nonlinearity of the supports themselves, neglect- 
ing the other forms of nonlinearity ; in addition, we regard the moving parts of the sup- 
ports and the elements in direct contact with them as bodies of small dimensions, arbit- 

rarily referring to them as “disks”. 
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Let s be the number of nonlinear supports and II < I,,. . . < I, the abscissas of their 
locations along the length of the rotor. We introduce the complex deflection zu (2, t) == 

= u1 (z, t) -1_ iu, (I, t), where uj (2, t) are the projections of the deflection of the axial 
line of the rotor on the fixed coordinate planes XZ!, and XT. The function II’ (T, 1) must 

satisfy 
1) the following differential equation in each domain : 

(3. i: 

2) the following nonlinear matching conditions for x I=- I, (r = l,...,s) : aw w (tr i_ 0) = to (l, -~ 0) = Ull., AJ (iv + 0) aw (lf - 0) az - -= az - az’ 
I a% (lp + 0) a’w (I, - fl) a%~ a ii’ FI J azz --- as3 1 = KI, & - ioKo, & -+ 

4-Q. &-(yt i-L, 
a:'uly (I%-l)q%~-' 

EZ 
@w, Pr + f-9 8% (Z,, - 0) 

a39 - I323 I = 
(2.2) 

d”ut 
zz-m d- -% at aw - Q,. ( I w,, I ) wi. 1 ZL’~ I-l+ ~,E,OZ exp i (ot + 0,) 

3) four boundary conditions which depend on the mode of support of the rotor ends ; 
4) various linear matching conditions at the sites of the rigid or elasticomassive sup- 

ports with a linear characteristic, ~oncen~ated masses, etc. 

In Eqs. (2. l), (2.2) I, + 0 are the abscissas of points on the rotor axis to the right and 
to the left of the point 5 = I,. and infinitely close to it ; F (I), F, are the eccentricities 

along the rotor and disk ; 8 (I), 0, are the angles between the eccentricity vectors and 

some plane rotating together with the rotor at the angular velocity o; VZ, is the mass of 

the disk; Kor, KI, are its polar and equatorial moments of inertia; EZ and p are the 
constant bending rigidity of the rotor and its mass per unit length; x, xl,. and xpr are 
the damping factors. The reaction of the support is directed opposite to the complex 
deflection L+ : its magnitude is a nonlinear function Qr(le+. 1) of its absolute value. Simi- 

larly, the vector of the moment in the support is opposite to the complex-angle vector 
3W,ih ; its magnitude is a nonlinear function L, (18wJds f) of its absolute value. For 
?I?,. = ICI, = &,, = 0 we obtain the conditions of matching without allowance for the 

mass of the nonlinear support itself. 

The linear matching conditions (which include the boundary conditions) will not be 

written out. The simplest of them can be obtained from (2.2). Thus, in the case of 
elastic supports with a linear characteristic Q == c 1 w 1 and L = d(d~/ax I, where c and 
d are constants; if there is a disk but no support at the boundary between two adjacent 
domains, then Q = L, =- 0 , etc. 

Setting w (z, t) =II W (;c)eiwi in (2.1) and (2.2). we obtain the differential equation 

for the function Ft‘ (x) and the following nonlinear matching conditions for z = I, : 

w (2, + O} = w (lr - 0) = wr, W’ (i, +. (I) = W’ (ir -- 0) = W,.’ 

EI In;* (l, -j- ‘!) - W” (I, - (‘)I = [W’K, $- iolc,, -t_ L, ( i WTf ] ) 1 TV,‘]-‘] W, 
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El fw”’ (5 -I- 0) - W”’ (z, -- ()I = [mrc@ - iox<, - Q, ( 1 W, I) 1 w, I-‘] w, -j- m,raro’ei8~ 
(Kr = Kor - Kl,.) (2.4) 

where the primes denote the derivatives of the function W with respect to z. 
Let us denote by X (3) a vector (column matrix) whose components are equal to 

{W (XT), W’ (C-C) EIW” (z), EZW”’ (5)). Equations (2.3) and all the matching conditions 

are linear over all the intervals 0 < z < Lr,.. ., I,. < x < l,+r (r = I,..., s) ; the vectors 

Xrr+o and Xr,.+t-o are therefore related by the matrix equation 

xrr+r-o = \l P$f to) II -$+o + II ZQ) (w) II (2.5) 

where the vector Ifpk@‘) (0) 11 (4 x 1) and the fourth-order square matrix I] p,+.*f’) (0) 11 can 

be determined b 
Y 

the standard methods of the theory of linear oscillations; specifically, 
the matrix 11 JQ% ‘) (0) u is a product of the matrices of the elastic domains, discrete 
masses. linear supports, etc. , over the interval Er < z < Er+l* 

The basic unknowns are the complex deflections Wr and angles of rotation W,.’ of the 

rotor cross sections over the nonlinear supports (r = I,..., s). Satisfying Eqs. (2.3), the 
boundary conditions at the left end of the rotor and all the linear matching conditions 
over the interval 0 < r < 11, and then eliminating the initial parameters, we obtain the 

following expressions for z = tl - 0 : 

EZW1* = aslWl + i%Wi f a,, EIWWI” = cz*1w1+ B,Wl’ + % 

where CQ*, arc and cxk are known functions of the angular velocity o. By virtue of (2,4), 
we can now express the vector X (a) for z = 11 + 0 as a sum of the product of the CO- 

agulated matrices and the vector H t 

where E, is a second-order identity matrix, 

’ x31, 
g1 = 

1 

p31+ o”K1+ iolc11+ Ll (. I w1’ ) ) \ Wl’ i-1 I 

cl41 + ml@” - ~~xz~-QQ~(~W~I)IW~~-‘, hl ’ II 
hJW1 

I II I Wl’ 

H l,+. = (0.0, a3, a4 + mew” exp i01) 

Next, we infer from (2.5) and (2.6) that 

X r*_@ = AlfZ)W1f EzP)wr + H&) 

Here the vectors &(a), Slf’) and H1+, are given by 

Al(“) = 1 CQ (‘) + rd*)Q~ ( lW1, f I WI 1-l!! 
EP = [l pfp + B*l% ( l Wl’ 1) / WA’ j-1 11 H 12_o = II at(@) Ii 

where k = 1,2,3,4 are the row numbers. 
Proceeding from left to right and carrying out the same operations, we can readily 

show that the vector 

Q-3 = i1 (h,(‘)W, + 8,(‘)W,‘) -+ Hl,_o 

and the vector 

(2.7) 

(2.8) 
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0, o”K, + iox1, + L, ( I Wp’ I) 1 W,’ i-1 WV 
g ==: 

l-r ‘I 1 m,o’~ - icolt:). - Q, (I W, I) ( W, I-‘, II 0 ’ ” = wv’ II II 
H[,,O = {O, 0, UP, ‘J?p(l‘) + m$xlP exp i0,) 

The functions abV(l‘), pl;v(l‘), ak@) of the angular velocity o in the above formulas can 

be determined by the familiar methods of the linear theory of the bending oscillations 

of rotors. 
Let us denote the first and second rows of the fourth-order identity matrix E4 by Ed 

and e2, respectively. From the conditions of equality of the complex deflections and 

angles of rotation in the cross sections z = I, - 0 and .C = i, + 0 we obtain the system 

of 2 (S - 1) equations el (X 
l,i 0 -- Xl+) = 0 (XLPTO - Xlr_,,j == !j (r = 2, _ , S) (‘II.!)) 

Let us set ‘VC’, = .A r exp iq,, Wr’ =- 8,. rxp il&, where the amplitudes A,, 11,. and the 
phases Q., $. are the unknown (required) real numbers; Eqs. (2.9) now become 

Let us add to them the two boundary conditions at the right end of the rotor. Separa- 
ting the real and imaginary parts, we obtain 4s equations from which we can determine 
the amplitudes A,, B, and the phases v,, & (r = l,...,s). There can be several num- 

bers of solutions; each of them corresponds to a specific shape W (2) =- A (x) exp irp (T) 

of the elastic rotor axis and to a specific periodic oscillation 
urO = n (5) co.3 [ot -I- ‘p b)l, us* = A (x) sin [ot -I- v (x)1 (2.10) 

Exact closed-form solutions (2.10) should be tested for stability. The small perturba- 

tions jj = uj - uj’ (1 = 1,2) must satisfy 

1) the following differential equations in each domain: 
@4j 

q. at. 

EIdx”fP &A t 
31% -..“2 =(I 

at 
(2.11? 

2) the following matching conditions at the nonlinear supports for z = i, (r = 1, . . . ,s) : 
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where the plus sign in the subscripts applies for I = 1 and the minus sign for j = 2; 

3) the same boundary conditions as the functions tci fz, 8): 
4) the same (but homogeneous) linear matching conditions as the functions uj (5, tf 

at the sites of the concentrated masses, rigid or elasticomassive supports with linear 
characteristics, etc. 

It is easy to show that relations (2.12) are equations in variations for nonlinear match- 
ing conditions (2.2) for x = I,, Unlike the remaining boundary conditions for the per- 

t~bat~o~s Ej , (2.12) contains terms with x / w-periodic coefficients, If the modulation 
of these coefficients is not large, then characreristio exponents (1.25) can be determined 

by the method of Sect.1 with allowance for the appended Note. 

Translated by A.Y. 

PROBLED% OF O~TI~ZAT~ON WITH CONST~INT~ 

IMPOSED ON THE PHASE COORDXNATES 

PMM Vol. 34, HI, 1970. pp.127-131 
A. S, SEMENOV and V. A. TROITSKII 

(Leningrad) 
(Received April 1, 1969) 

We consider the problems of optimisation of control processes with first and higher order 

constraints imposed on the phase coordinates o-3). We establish conditions which make 
easier the determination of the point at which the phase trajectory leaves the boundary 
of the region of admissible variation of coordinates. 

1, Strtemant af ths problem, The problem studied in @, 43 was the fol- 
lowing. Out of the continuous functions xg (t), (s = l,.. ,, n) possessing piece-wise con- 
tinuous derivatives q (1) and out of the piece-wise continuous controls UA (t), (k = I,.. 

. . . . m) satisfying the differential equations 

g, = xg* - Is (x, u, t) I‘ 0 (s = 1,.*. n) W) 

on the interval [to, 2’1 , the relations 

the inequa~~ 
$ k = $lk (X, u, t) = 0 (k = I,..., r < m) 

@ (2) G 0 

at the ends of the segment [b,,,, Tl and the conditions 

cPr = rprls itof, ior z(T), Tl = 0 (t = L.., P f 2n + $1 
to find those, which minimize the functional 

1 = g [z (to), 20, I:(T), Tl+ [ fo (2, u, t) CL! 
Ill 

Here 2 and u denote the respective sets of phase coordinates x1,... Z~ and controls 
Ul,.., +$. 

In such problems the optimal trajectory may in&de segments belonging to the bound- 
ary of the region defined by the inequality (1.3). In the following, we shall concentrate 
our attention on such segments. 

If a segment of the trajectory lying on the interval it%* t21 belongs to the boundary of 


